
Issue #1:

Managing Extensions

John Ousterhout

Computer Science Division
Department of EECS

University of California at Berkeley

Managing Extensions, slide 2

Introduction

Goal:

• Make it easy to mix and match various extensions
to Tcl and Tk (both C code and Tcl scripts).

Problems:

• Name conflicts.

• Installation is non-uniform and clumsy.

• Proliferation of binaries.

Solutions:

• Naming conventions.

• Installation conventions.

• Dynamic linking, better auto-loading.

Managing Extensions, slide 3

Naming Conventions

Problem:

• Each person assumes he/she is the only one
building extensions.

• Different packages use same names for global
variables and commands, e.g. send.

Possible solution #1: module mechanism

• Tcl provides mechanism for static variables and
procedures?

• Still doesn’t solve problem for new commands and
global procedures.

Solution #2: single command with options

• Like string command: string index, etc.

• Still need to find unique command name, unique
variable names.

Managing Extensions, slide 4

Naming Conventions, cont’d

Solution #3: application prefixes

• For each application or extension, pick a short prefix:
expect_
xp_
tk_
dp_

• Use prefix in all global names (variables, commands,
procedures):

xp_send
tk_priv
dp_rpc

• Suggestions for uniformity:

- Only one underscore per name.

- Use capitalization at internal word boundaries.

• Example: tk_menuBar, not tk_menu_bar or
tk_menubar.

Managing Extensions, slide 5

Other Naming Issues

Clashes in prefixes?

• Establish registry for prefixes.

Solution #4: object-oriented commands

• Like Tk widgets.

• One command to create object, returns object
name: button .b.

• Use object name as command name, put action as
first argument: .b invoke.

• Avoids command space pollution: only one new
command (plus object commands).

• Can provide uniform actions for many different
kinds of objects.

• Must allocate unique object names (similar to
choosing unique prefix).

Managing Extensions, slide 6

Installation

Scripts are easy:

• Put .tcl files in a directory.

• Create tclIndex file.

• Add directory to auto_path.

C code is hard:

• Where to put source code?

• Must compile extensions.

• Must add code to wish main program by hand.

• Must make new binary.

• Different packages install differently.

• Incompatible versions.

Managing Extensions, slide 7

Source Code Management

• Pick directory to hold sources for Tcl, Tk and
extensions.

• Each package or application is a subdirectory of this
directory:

• Keep version number in directory name, so there can
be multiple versions of the same package.

• Use GNU autoconfig for configuration.

• Create library as well as application (more below).

tcl7.0 tk3.3 expect2.1

Managing Extensions, slide 8

Incorporating Extensions

In package:

• Define one initialization procedure:
Expect_Init
Dp_Init

• Init proc takes single argument: Tcl interpreter.

• Calls Tcl_CreateCommand to create new
command(s) for package, performs any other
initialization for package.

To use package in application:

• Create procedure Tcl_AppInit that calls all
relevant initialization procedures, invokes
application’s startup script.

• Link with relevant libraries.

• No need to modify main: it calls
Tcl_AppInit; Tcl and Tk provide default
Tcl_AppInit.

Managing Extensions, slide 9

Dynamic Linking

Goals:

• Avoid proliferation of binaries.

• More flexible: can add new packages dynamically
without recompiling.

• Shared libraries save memory.

How?

• New Tcl command:

load library initProc

• I will solicit implementations for various systems,
include them in Tcl releases.

• Auto-load support (next slide).

• Must resolve differences in how to compile
shared libraries for different systems.

Managing Extensions, slide 10

Changes to Auto-Loading

Current approach:

• tclIndex files have fixed format:

tk_dialog dialog.tcl

procedure
name

file to
source

• Index files are parsed, not evaluated.

New approach for Tcl 7.0:

• Index files will be evaluated:

set auto_index(tk_dialog) \
"source $dir/dialog.tcl"

• Result: 3-4x faster, more flexible.

• Should accommodate TclX style of auto-loading?

• Can invoke load instead of source to auto-load
shared libraries.

Managing Extensions, slide 11

Summary

• Extension builders should conform to conventions.

• Convert non-conformant packages if possible (at next
incompatible release?).

• It should become much easier to take advantage of all
the contributed packages.

